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Visualizing the log-periodic pattern before crashes
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Abstract. We present a method for visualizing the pattern which we believe to be a precursor signature
of financial crashes (or ruptures). The log-periodicity of the pattern is investigated through the envelope
function technique. Three periods of the Dow Jones Industrial Average (DJIA) are investigated: 1982–1987,
1992–1997 and 1993–1998. The presence of a rupture in the end of 1998 is outlined from data taken before
the end of August 1998.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
47.53.+n Fractals

1 About a financial crash occurence

The application of statistical physics ideas to the forecast-
ing of stock market behavior has been proposed long ago
[1] and pursued in the pioneer work of physicists inter-
ested by economy laws [2,3]. Econophysics [4] aims to fill
the huge gap separating “empirical finance” and “econo-
metric theories”. Various subjects have been approached
like the option pricing, stock market data analysis, mar-
ket modelling and forecasting, etc. It should be also noted
that economist authors (without the help of physicists)
have already applied physics methods to market modelling
[5]. Also, physicists have recently used techniques coming
from the world of finance, like moving averages [6].

Among noticeable events, crashes are spectacular ones.
Even though a stock market crash is considered as a highly
unpredictable event, it should be noticed that it takes
place systematically during a period of generalized anx-
iety spreading over the markets. The crash can be seen
as a natural correction after euphory bringing the mar-
ket to a “normal state”. Two important facts should be
underlined:

(i) the series of daily fluctuations of stock markets
present a huge clustering around the crash date, i.e.
huge fluctuations are grouped around the crash date.
This is well illustrated in Figure 1 for the case of the
Dow Jones Industrial Average (DJIA) around 1987.
The time span of this clustering is quite long: a few
years. This clustering indicates that larger and larger
fluctuations take place before crashes;

(ii) a second remark concerns the panic-correlations ap-
pearing before crashes. This kind of collective be-
havior is commonly observed during a trading day.
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Fig. 1. The DJIA fluctuations before and around the crash of
1987. Notice the huge clustering of the volatility spanning over
several months. See the relative quite period in 1985 and the
increasing volatility in 1986 and 1987. The marks for year are
placed at Jan. 1st.

The market in Tokyo closes before London opens and
thereafter New York opens. During periods of panic,
financial analysts are looking for the results and evo-
lution of the geographically preceding market. Strong
correlations are found to be existing inbetween market
fluctuations before crashes.

Fluctuations and correlations are both ingredients
which are supposedly known to play an important role
in thermodynamic phase transitions.

In 1996, two independent works [7,8] have proposed
that critical phenomena would be possible scenarios for
describing crashes. More precisely, it has been proposed
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that an economic index y(t) increases as a power law dec-
orated with a log-periodic oscillation, i.e.

y = A+B
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where tc is the crash-time or rupture point, A, B, m, C,
ω and φ are free parameters. This evolution y(t) is in fact
the real part < of a power law divergence at t = tc, if
m > 0, with a complex exponent m+ iω, i.e.
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The law for y(t) diverges or converges at t = tc with an
exponent m > 0 or < 0, respectively, and this evolution
is decorated with oscillations converging at the rupture
point tc. This law is similar to that of critical points, and
generalizes the situation for cases in which a Discrete Scale
Invariance (DSI) [9] is presupposed.

The complex relationship (1) has been proposed else-
where in order to fit experimental measurements of sound
wave rate emissions prior to the rupture of heterogeneous
composite stressed up to failure [10]. The same type of
complex power law behavior has been also observed as
a precursor of the Kobe earthquake in Japan [11]. Such
log-periodic corrections have been recently reported [12]
in biased diffusion on random lattices [13,14].

In August 1997, we have performed a series of inves-
tigations in order to emphasize crash precursors [15]. We
have mainly used the closing values of the Dow Jones In-
dustrial Average (DJIA) and the Standard & Poor 500
(S&P500). A law slightly different from equation (1) has
been proposed in [16]. A strong indication of a so-called
crash event or market rupture point has been numerically
discovered by analyzing data up to August 1997. The oc-
curence date was predicted to be in between the end of
October 1997 and mid-November 1997 [15]. The crash oc-
curred effectively on October 27th, 1997!

Even though the crash of October 1997 was predicted,
the scientific community is actually divided between those
who believe in such a crash prediction/interpretation
[15,17] and those who believe that crashes are unpre-
dictable events and our Aug. 1997 report was a lucky guess
or at best accidental [18]. We discuss a little bit more the
predictability problem and findings in this paper.

Moreover, we present a numerical method for visu-
alizing the log-periodic oscillations. This method is ap-
plied herein to three different time series of the DJIA: re-
spectively Jan. 1982–Aug. 1987, Jan. 1992–Aug. 1997 and
Jan. 1993–Aug. 1998 periods. All series begin on Jan. 1st
of the first year and end on Aug. 31th of the last year.
These 6 year long periods are illustrated in Figures 2a
to 2c.

Table 1.

period tc real tc

Jan. 1982–Aug. 1987 87.93 ± 0.03 87.79

Jan. 1992–Aug. 1997 97.97 ± 0.09 97.81

Jan. 1993–Aug. 1998 98.99 ± 0.15 ?

2 Methodology and data analysis

In references [16,17], we underlined the fact that there are
strong physical arguments stipulating that m could be or
even should be taken as “universal”. We have proposed
the universal m = 0 value, i.e. a logarithmic divergence.
The logarithmic divergence of the index y for t close to tc
reads

y = A+B ln

(
tc − t

tc

)
×

[
1 + C sin

(
ω ln

(
tc − t

tc

)
+ φ

)]
for t < tc. (3)

One should remark that the full period [ti, tf ] for a mean-
ingful fit should contain the whole euphoric precursor. We
have found in [16,17] that the log-divergence is closer to
the real signal than the power-law divergence case. Some
criticism about equation (3) has been recently formulated
by Sornette and Johansen [19], but some reply to their
arguments is already found in reference [16,17]. Whence,
let us consider herein equation (3) only.

The log-divergence (3) has 6 parameters. In order to
find out a rupture point tc from a data series, we have per-
formed non-linear fits using only the simple log-divergent
function

y = A+B ln(tc − t) for t < tc (4)

where the condition B < 0 is fixed. That function has only
3 parameters and a good estimation of tc can be obtained.
Both Levenberg-Marquardt and Monte-Carlo algorithms
[20] have been used for fitting. In Table 1, the best values
of these parameters are given for the 3 studied periods.
One observes that the estimated tc points are close to the
“black” days for the first two periods. It should be noticed
that a rupture point is predicted for the end of 1998.

Assuming that equation (4) is valid, one should remark
that

dy

dt
=
−B

(tc − t)
(5)

should be found in the daily fluctuation pattern (Fig. 1).
This is consistent with the clustering/increasing fluctu-
ations discussed in the Introduction. However, it is not
usually obvious to fit an equation as (5). The fits lead to
bad results with huge error bars.

A fundamental point which can be raised is the sta-
bility of the fitting results using equation (4) when the
number of data points varies [21]. Figure 3 presents the
predicted rupture point tc as a function of the position
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Fig. 2. The DJIA evolution for 4 different periods of euphory, each spanning 6 years: (a) Jan. 1982–Aug. 1987, (b) Jan. 1992–
Aug. 1997, (c) Jan. 1993–Aug. 1998. The continuous curves represent the log-divergence fits using equation (4). The pattern at
the bottom of each figure represents the envelope of the DJIA which is well fitted by equation (6). The marks for years are
placed at Jan. 1st.

tf of the last data point of the 1982–1987 series. One ob-
serves a global convergence of the fits even though there
are local bursts moving tc backwards. The latter changes
correspond to downwards fluctuations or corrections of
the market. At this point of our investigations, we can
conclude that the 3-parameter fit using equation (4) is
enough in order to find out the presence of a possible rup-
ture point in such a time series.

Let us now consider the oscillating term of equation (3)
which has been quite criticized since no traditional or eco-

nomical argument so far seems to support the DSI theory
at this time. However, the hierarchical structure of the
market has been suggested as a possible candidate for gen-
erating DSI patterns in [17].

In order to prove that a log-periodic pattern appears
before crashes, we have constructed the envelope of the
index y. Two distinct curves are built: the upper enve-
lope ymax and lower one ymin. The former represents the
maximum of y in an interval [ti, t] and the latter is the
minimum of y in an interval [t, tf ]. At the bottom of
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Fig. 3. The evolution of the predicted tc as a function of the
last point tf of the Jan. 1982–Aug. 1987 data series. Time is
given in days and its origin is taken from the true crash day
(Black monday, October 19th 1987).

Table 2.

period ω

Jan. 1982–Aug. 1987 6.68 ± 0.05

Jan. 1992–Aug. 1997 8.91 ± 0.05

Jan. 1993–Aug. 1998 10.26 ± 0.08

the Figures 2a to 2c, ymax − ymin is presented. One ob-
serves a remarkable pattern made of a succession of thin
and huge peaks.

When ymax − ymin = 0, it means that the index y
reaches some value never reached before at a time t and
would never have reached if the time axis had been re-
versed thereafter. This corresponds to time intervals dur-
ing which the value of the index y reaches new records. In
fact, the pattern (see Fig. 2) reflects obviously an oscilla-
tory precursor of the crash. Using the tc values of Table I,
we have fitted the following function

ymax − ymin = (C1 + C2t)(1− cos (ω ln (tc − t) + φ)) (6)

where C1 and C2 are parameters controlling the ampli-
tude of the oscillations. Without these parameters, a fit
is still possible if an a priori single and constant ampli-
tude (i.e. C2 = 0) is presupposed. The above relationship
allows us to measure the frequency ω (see Tab. 2). One
should remark that for the 1993–1998 period, the oscilla-
tory pattern seems to be accompanied by an additional
cyclic term (see bottom of Fig. 2c), probably introduced
by the preceeding crash. Some aftershock pattern is known
to occur in earthquakes but also in the case of crashes [7]
and turbulence also. This should be investigated in future
work, and in particular in intra-daily fluctuations.

Fig. 4. (a) A shematic representation of a Cayley tree as stud-
ied by Amaral and coworkers [22]; (b) another representative
of a Cayley tree leading to a discrete fractal representation,
i.e. a Sierpinski Gasket.

3 Discussion: Is DSI relevant for stock
markets?

We have seen above that a log-periodic pattern exists
before crashes. As a consequence, the market should be
viewed as a discrete fractal system.

How can we find out such a DSI structure in the stock
market? Recently, Amaral et al. [22] have studied the
statistics of several companies as well as their respective
growth. They have found an important result: the growth
of companies can be modelled using a hierarchical lattice
like a Cayley tree (see Fig. 4a). The fact that the market
is hierarchically organized is probably the origin of the
log-periodic pattern observed in Section 2. A price model
based on such a hierarchical structure has been recently
established [23] in order to test this hypothesis.

By analogy and from the above, we conjecture that
stock markets are also hierarchical objects where each
level has a different weight and a different characteristic
time scale (e.g. the horizons of the investors). The hierar-
chical tree might be fractal and its geometry might control
the type of criticality [24]. If weights and/or time scales are
judiciously chosen, one can build a discrete fractal struc-
ture from a Cayley tree (see Fig. 4b). Nevertheless, to our
knowledge, no microscopic model is actually able to sim-
ulate a crash. This is a challenge left for future works.
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4 Conclusion

Three different periods of the Dow Jones Industrial Av-
erage (DJIA) have been analyzed. By considering the en-
velopes of the DJIA, we have demonstrated that before
crashes, a log-periodic pattern exists.

Even though error bars are intrinsically large, it is sur-
prising to see that a rupture point for the end of 1998 is
easily predicted from data taken before the end of August
1998. The stability of this result should be tested in real-
time and on other scales for the best future of economic
systems.

5 Additional note

After the completion of this work (in September 1998),
dramatic losses have been reported on stock markets at
the beginning of October 1998. Among others, the DJIA
fell by 4% during the first week of October while the Ger-
man DAX index fell by 15% during 2 days. This drastic
correction of the various stock markets could be probably
interpreted as the rupture point predicted in September
1998 (see Tab. 1) when this work was completed. If it is
the case, the rupture point is much in advance with re-
spect to the predicted value, i.e. tc = 98.77 instead of the
predicted tc = 98.99 value from Table 1. This is likely due
to the number of data points and to anticipate processes.
Nevertheless, the model seems to remain a useful indicator
of crashes.

Note added in proof

After a communication from the editor about paper refer-
ence [19], and following a request by the referee, we have
to comment about one statement in [19] made on a pre-
viously published work [16]. The authors of reference [19]
consider in their fourth footnote that we have misrepre-
sented their formula equation (1) in [7]. We agree that we
misrepresented their formula.
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